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We study the diffusion of a particle on the sites of a triangular lattice of which 
half the sites are occupied by a "background" of other particles. No  two par- 
ticles may occupy the same site. We carry out Monte  Carlo simulations for the 
following model: At each Monte  Carlo step the tracer at tempts to move to a 
neighboring site, which it does if the site is unoccupied. At each step, each 
background particle attempts to desorb with probability ~. If a background 
particle desorbs, it is replaced at a randomly chosen site on the lattice. We 
define (R~r(t))/t=Dt~. For the case ~ = 0 ,  we calculate D o l t  k and find 
k=0.7 t_+0.01 ,  where t is the number  of  Monte  Carlo steps. When ~,>0, we 
calculate Dtr ~ y w~d and find wad = 0.24 + 0.02. We compare this to the model 
in which the background particles are constrained to move to nearest neighbor 
sites and find Dtr ~ 7 w~ with wl = 0.28 _+ 0.03. 

KEY WORDS: Critical exponents; tracer diffusion in 2D; Monte  Carlo 
simulation. 

1. I N T R O D U C T I O N  

An understanding of the diffusion of a tracer particle in the presence of a 
background of other objects is of practical importance as well as being of 
intrinsic interest. A study of the movement of a tracer in two dimensions 
has applications to, for example, the distribution of proteins or other 
polymers in biological or model membranes. (1~) Simplified models of these 
systems have been devised to study the diffusion of a tracer particle on the 
sites of a lattice which can also be occupied by "background" particles. (5'6) 
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Of particular interest is the movement of the tracer particle at the static 
percolation limit, i.e., when the background particles have a concentration 
c = Cp. Here we will compare the results of computer simulations for the 
cases in which a tracer particle moves by jumping to an empty nearest 
neighbor site while the background particles move by either (a) jumping to 
an empty nearest neighbor site or (b)desorbing from the lattice while 
another particle is adsorbed onto the lattice. The concentration of back- 
ground particles is maintained at c = cp. Kehr et  a/. (7) derived an expression 
for the exponent w describing how the long-time diffusion coefficient goes 
to zero in case (a). Although they confirmed it by computer simulation for 
d =  3, they did not report a value for d =  2. This paper will be concerned 
with calculating values for this exponent in cases (a) and (b) for d =  2. 

2. M O D E L  A N D  S I M U L A T I O N  P R O C E D U R E  

We used a triangular lattice of N sites with periodic boundary condi- 
tions. Half of the sites were occupied by background particles distributed 
randomly, and Ntr tracer particles, with Ntr ,~ N, were placed at unoccupied 
sites. Probabilities 1 and P~< 1 were assigned to the tracers and to the 
background particles, respectively. We performed a Monte Carlo simula- 
tion in order to calculate the diffusion coefficient of the tracer, 

Dtr= lim ( R 2 t , ( t ) ) J t  (1) 

where t is the number of Monte Carlo steps elapsed and R2tr(t) is the square 
of the vector distance moved by the tracer in that number of steps. ( . . . )~  
indicates that the simulation was repeated a number of times s in order to 
obtain a value for Dt~. 

At each Monte Carlo step all particles were visited in a random 
sequence. Each tracer particle attempted to move to a randomly chosen 
nearest neighbor site, which it did if that site was not occupied by a back- 
ground particle. At each step, for each background particle, we selected a 
random number 0 ~< r < 1. If r > P, then the background particle remained 
unmoved. If r ~< P, then that background particle could attempt to move as 
follows for the two cases: (a) For  the same particle we chose one of the 
six nearest neighbor sites randomly. If this site was unoccupied, then 
we moved the background particle to that site. ( b ) W e  removed the 
background particle from the lattice. We then randomly chose a site on 
the lattice. If it was unoccupied, we placed a background particle there. 
If it was occupied, we searched in its neighborhood until we found an 
unoccupied site and placed a background particle there. 

It is clear that case (b) is not simply the extension of case (a) to allow 
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steps of any range for the background particles. In case (a) we do not 
search for an empty nearest neighbor site. However, case (b) is a more 
realistic representation of objects adsorbing and desorbing while keeping 
C=Cp. 

We defined 7 = l IP and searched for an exponent such that (see, e.g., 
ref. 5) 

D , r ~ 7  w (2) 

where w = wl for case (a) and w = wad for case (b). Equivalently, if the 
tracer and background particles moved at average rates of F '  and F, 
respectively, then F ' / F =  7. Kehr et al. (7) performed computer simulations 
and calculated w 1 =0.56 +0.02 for d - 3 ,  in essential agreement with the 
expression (7) 

w~ = #/(2v - fi + #) (3) 

3. RESULTS 

We studied the behavior of Dt~ in both cases for N = (200) 2, Nt~ = 40, 
and for t equal to 1000, 2000, and 4000 Monte Carlo steps in order to 
identify asymptotia. For  t=4000  [case (a)] and t=2000  [case (b)] we 
fitted (R2t~(t))s to the form (8) 

(R2t~(t) ) s ~  A + B l o g  t + Dt~t (4) 

and plotted (R2r(t))s / t  against log t/t, ignoring the term in A/t, to obtain 
a value for Otr. We also plotted (R2r( t ) )s / t  against t, ignoring the terms 
in A and Blog  t, and obtained another value for Dtr. We compared the 
results of these two methods and found them to be consistent. We used 
s = 32, i.e., 32 samples each containing 40 tracers. We confirmed that the 
ratio of the average rate of movement F ' / F  was equal to ~ = lIP. 

We checked our procedures in the case for which the background 
particles are static (P = 0) and found that 

( R ~ ( O ) s ~ t  k , k = 0 . 7 1 +  0.01 (5) 

for short times (up to t = 1000), in accord with previous results. (5/ 
For  longer times (from t = 1000 to t = 4000), we found that 

k = 0.66 _+ 0.01 (6) 

From this value we calculated # using the expression 

= (2v - / 3 ) ( 1  - k ) / k  (7) 
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and found that 
= 1.30 _ 0.04 (8) 

when the values of/? = 5/36 and v = 4 / 3  (9) for d =  2 are substituted. 
Figure 1 shows plots of log(Dtr) against log(7) for case (a) (Fig. 1A) 

and case (b) (Fig. 1B). The slopes of these plots yield -w~ and -wad,  
respectively. From the first we found that 

wl = 0.28 _+ 0.03 (9) 
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Fig. 1. (A) log((R~r(t)),/t ) vs. log(t) for P = 0 .  The slope is k 1= -0.29 for log(t) up to 3. 
For log(t) from 3 to 3.6, k l = -0.34. (B, C) log(Dtr) vs. log(7 ). The slopes give (B) Wl = 0.28 
and (C) Wad=0.24. 



Critical Exponents for 2D Tracer Diffusion 733 

which is essentially in accord with that given by (3), wl = 0.30_ 0.01, when 
the values of/~ = 5/36, v = 4/3, (9) and/~ = 1.10 _+ 0.05 (l~ for d =  2 are sub- 
stituted. From the second we found that 

wa~ = 0.24 + 0.02 (10) 

which is expected to be different from Wl. 
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